How to Configure Mutual Authentication using X.509 Certificate in SMP
SAP Mobile Platform (3.X)

Author: Ali Chalhoub
Global Support Architect Engineer

Date: July 2, 2015
TABLE OF CONTENTS

ABSTRACT ... 4

1. Preparation ... 4
2. Getting Started... 4
3. Configuring SMP 3.0... 4
4. Troubleshooting... 4

PREPARATION... 5
Definitions ... 5
Environment... 7
Agenda.. 8
How Mutual Authentication Works in SMP 3.0 .. 8

GETTING STARTED.. 10
Generating x.509 certificates and configuring the SAP Backend .. 10
User Mapping ... 11
Adjust Profile Parameters .. 13
Converting PFX certificate to p.12 ... 14

CONFIGURING SMP 3.0 ... 17
Import Certificates into SMP Key Store ... 17
Verifying the certificates in the keystore ... 24
Configuring SMP 3.0 OData Endpoint .. 26
Pinging the Endpoint ... 35
Installing the user certificate on the client browser ... 36
Generating SMP public certificate .. 43
Install the SMP 3.0 Public Certificate ... 51
Installing POSTMAN ... 55
Registering with SMP using X.509 user certificate ... 57
Verifying the Registration in SMP Cockpit ... 64

TROUBLESHOOTING ... 65
Clearing the Cache ... 65
Response Code 404 .. 65
Troubleshooting X.509 Client Certificate communication issues ... 65
ABSTRACT
This white paper provides the following:

1. Preparation
 1.1. Definitions
 1.2. Environment
 1.3. Agenda
 1.4. How Mutual Authentication Works between SMP 3.0 and SAP Gateway

2. Getting Started
 2.1. Generating x.509 certificates and configuring the SAP Backend
 2.2. User Mapping
 2.3. Adjust Profile Parameters

3. Configuring SMP 3.0
 3.1. Import Certificates into SMP Keystore
 3.2. Verifying the certificates in the Keystore
 3.3. Configuring SMP 3.0 OData endpoint
 3.4. Pinging the Endpoint
 3.5. Installing the user certificate on the client browser
 3.6. Install the SMP 3.0 Public Certificate
 3.7. Generating SMP public certificate
 3.8. Installing POSTMAN
 3.9. Registering with SMP using X.509 user certificate
 3.10. Verifying the Registration in SMP Cockpit

4. Troubleshooting
 4.1. Clearing the Cache
 4.2. Response Code 404
 4.3. Troubleshooting X.509 Client Certificate communication issues
Definitions

Before getting started, let’s explain few terms that we will be using in this white paper

SSL Handshake: SSL is used to encrypt information between client(s) and server(s).

X.509 Certificate Authentication: It is basically used to verify the identity of the server when using SSL.

Mutual Authentication: It is a method of which a client must prove its identity when it communicates with the server, as well the server must prove its identity to the client before any traffic is sent between the client and the server. It is called two way identifications.

Technical User: An Identity that represent a system not a person. The objective is to configure the backend to trust the SMP server that the user certificate is passing are valid certificates. It is about establishing the chain of trust.
How to Configure Mutual Authentication using X.509 Certificate in SMP

Figure 1 - SSL Handshake Process

SSL HANDSHAKE

1. Client browser requests a secure site https://www.domain.com

2. Sends back a Public Key and a Certificate
 - Client browser checks and validates the certificate
 - The browser generates a random symmetric key to encrypt the subsequent sessions
 - Finally it uses the server public key to encrypt the payload

3. Public Key

4. The server uses its PRIVATE key to decrypt the payload. It will then uses the symmetric key to encrypt the data before send it.

5. Client and server now uses the symmetric key to encrypt and decrypt all data.

<table>
<thead>
<tr>
<th></th>
<th>a. Client browser requests a secure web site</th>
<th>b. It asks the server to identify its identity</th>
<th>https://www.domain.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a. The server gets the requests and it knows the request for a secure website because it starts with https</td>
<td>b. The server will respond to the client and sends back a PUBLIC KEY and a CERTIFICATE that identify its identity</td>
<td>![Public Key + Certificate]</td>
</tr>
</tbody>
</table>
How to Configure Mutual Authentication using X.509 Certificate in SMP

| | a. The browser now receives the PUBLIC KEY and CERTIFICATE from the server
| | b. The client browser will inspect the certificate root against a list of trusted CAs (Certificate Authority) to confirm it was signed or issued by a trusted entity and to confirm the server identity. It verifies if the certificate expired or not and if the it belongs to the website that was requested
| | c. After everything is checked and everything is OK, the browser will generate a random symmetric key which is used to encrypted the actual data
| | d. Then the browser uses the server PUBLIC KEY to encrypt the payload
| **3** |
| | a. Now the server uses its own PRIVAT KEY to decrypt the payload
| | b. It fetches the symmetric session key
| | c. Server sends back the acknowledgement to the client that the server is ready to use the symmetric session key to start encryption of the data
| **4** |
| | The browser and the server will start encrypting and decrypting the data using the symmetric session key
| **5** |
| Note: | Two way identifications: In Step 2 the server sends the CA Lists as well requesting the client certificate + Nonce (random bytes)

Environment

In this white paper we are using

1. SAP Mobile Platform 3.0 with SP07
2. Open SSL
3. KeyStore Explorer 4.1.1
4. SAP Gateway OData Endpoint
5. Windows 2008 Enterprise R2
6. VMware Instance
7. Chrome
8. Firefox
How to Configure Mutual Authentication using X.509 Certificate in SMP

9. Postman

Figure 2 Mutual Authentication using X.509 certificate

Agenda

In this white paper we are going to do the following

1. Generate a technical user certificate and sign it
2. Generate a user certificate that represents the client and sign it
3. Import the Root certificate and technical user into SMP keystore
4. Configure an Application in SMP to access the SAP OData Endpoint
5. Import the user certificate into browser personal certificates
6. Import the Root certificate into the Trusted Root Certification Authorities
7. Register with SMP using Postman

How Mutual Authentication Works in SMP 3.0

In this section, we will go through the steps of how Mutual Authentication works in SMP 3.0 and SAP Gateway

To do Mutual Authentication with SMP 3.0

1. Client connects on https 8082

2. SMP says: Here is my server certificate; I need to see your certificate and here is what are accepted as a CA. The client will validate the server certificate first – signed by a CA that is trusted by the device truststore. CA certs on the device are provisioned by the device manufacturer for BYOD, or
How to Configure Mutual Authentication using X.509 Certificate in SMP

can be managed by MDM. If the server certificate is signed by a trusted CA, is within its validity period, and the Subject CN matches the host.domain of the https request URL, then the certificate is accepted.

3. Client picks a certificate from the local store that thinks is going to be acceptable based on the CA that the server can accept the client certificate that goes with its private key to decrypt the content. Standard HTTPS mutual certificate handshake ensues. During this handshake the server will verify the client's certificate is signed by a trusted CA, within its validity period and (optional) check for certificate revocation via CRL or OCSP. If the certificate passes validation, we establish an initial authenticated JAAS Subject with a Principal name derived from the certificate Subject DN, and we create a Credential containing the X.509 client cert which is also attached to the Subject.

4. Now we got through the authentication portion. Cached the x.509 certificate in memory

5. Now SMP talking to Back-end (i.e SAP backend)

6. SMP is not a browser, the Administrator configure the certificate alias and uses that to complete the handshake. This is a “technical user” certificate that has been generated and signed by a CA the SAP backend server will trust, and has been imported into the SMP keystore (using keytool or whatever tools works for you) with a specific alias name that you provide in the Cockpit when you configure the endpoint connection to SAP backend. *NOTE* the password for this private key entry must be the same as the keystore password. JKS keystores allow for each private key entry to have its own password, but SMP doesn’t support this feature.

7. Backend sees SMP as a technical user and not the end user client. Now we completed the handshake

8. SMP is ready to forward the client request to the backend, but it knows that it should *try* to do SSO so the backend knows who the ultimate client user is. SMP knows how to do SSO using (X.509 user certificate, MYSAPSSO2 token, username/password). It looks for user credentials (attached to the JAAS Subject) in that order. In this case we find the X.509 credential and will use that for SSO. The way that SSO is performed using X.509 is to add the SSL_CLIENT_CERT http header to the request, with the value as the base64 encoded client cert

Note: Netweaver Gateway and several other SAP server systems are aware of this SSL_CLIENT_CERT mechanism in cases where the client's SSL has been terminated up-stream
GETTING STARTED

Generating x.509 certificates and configuring the SAP Backend

To digitally identify a particular individual client certificates are used. In general, certificates are issued by company's PKI (X.509 Public Key Infrastructure). In our case, to test our scenario we will create end user certificates using OpenSSL.

Installing and Configuring OpenSSL

First thing we need to do is to generate the SAP server side technical user certificate by doing the following

1. Download OpenSSL from the following URL:
 http://slproweb.com/download/Win64OpenSSL-1_0_0n.exe
2. Install OpenSSL, by default it gets installed under C:\OpenSSL-Win64\bin
3. Set the environment variable: set OPENSSL_CONF=c:\OpenSSL-Win64\bin\openssl.cfg

Creating the CSR file

1. Open the command prompt in Administration mode
2. Navigate to C:\OpenSSL-Win64\bin
3. Issue the following command:
 openssl req -sha256 -out SUPUSER.csr -new -newkey rsa:2048 -nodes -keyout server.key
4. Sign the certificate using your internal CA. In our test case, we are using our SAP internal CA
5. Once it is signed, save it to your local drive. In our test, we called the CSR file SUPUSER.crt
6. After receiving the signed certificate, we need to convert it to pfx format by issuing:
 openssl pkcs12 -export -out SUPUSER.pfx -inkey server.key -in SUPUSER.crt

 Very Important: Enter password same as your SMP Keystore. In our test, we are using the default s3pAdmin

7. Repeat the above procedure to create the user certificate SSLUSER.pfx
8. Import internal CA root certificate into backend Trusted Certificate List using Tx STRUSTSSO2 (see below screen)
User Mapping

User mapping can be done manually or using CERTRULE (recommend approach). For more information on certificate based rules follow below link:

https://help.sap.com/saphelp_nw73ehp1/helpdata/en/c8/30fd902dc8473b9e59db1576cc784b/content.htm?frameset=/en/1f/d1aa687d1d403cb80f89eb15d2c155/frameset.htm¤t_toc=/en/1c/ad1640033ae569e1000000a155106/plain.htm&node_id=125&show_children=false

In this paper, we manually mapped user certificate using VUSERXTID.

On the SAP backend do the following:

1. Go to SE11 Tx
2. Database Table: VUSERXTID and hit Display Click on Contents (CTRL+SHIFT+F10)
3. External ID Type: DN of certificate (DN) and clicked on continue
How to Configure Mutual Authentication using X.509 Certificate in SMP

4. Now click on change

![Display View "Assignment of External ID to Users": Overview]

5. Now click on New entries

![Change View "Assignment of External ID to Users": Overview]

6. External ID should be the Subject DN Assign the user (Prior to this activity make user is already created).

7. Check Activated example:

 Important: Subject DN should match with the VUSEREXTID entry as shown in the following screens below:
How to Configure Mutual Authentication using X.509 Certificate in SMP

8. Repeat above steps for SSLUSER

Adjust Profile Parameters

Adding profile parameters for client verification and establishing trusted relationship between SAP Mobile Platform and ICM. In TCode enter:

1. RZ10
2. Set the AS ABAP profile parameter icm/HTTPS/verify_client to the value 1 (accept certificates) or 2 (require certificates) to support the use of client certificates
3. TCode: RZ10 For X.509-based logon to NW AS, you need following parameters to create a trusted relationship between the SMP Server and ICM

 icm/HTTPS/trust_client_with_issuer = <Root Subject DN of the SMP Technical User>
How to Configure Mutual Authentication using X.509 Certificate in SMP

`icm/HTTPS/trust_client_with_subject = <Subject DN of the SMP Technical User>`

Example:

`icm/HTTPS/trust_client_with_issuer = EMAIL=email@sap.com, CN=SAPNetCA, OU=SAPNet, O=SAPAG, C=DE`

`icm/HTTPS/trust_client_with_subject = CN=HOSTNAME, OU=COE, O=SAP-AG, C=DE`

Please refer to the following KBA for more details: [2008296](http://help.sap.com/saphelp_nw70ehp2/helpdata/en/48/3a062c902131c3e1000000a42189d/content.htm)

Note: For any issues experienced in the backend, change the trace levels and check the logs. Please refer to this URL:

http://help.sap.com/saphelp_nw70ehp2/helpdata/en/48/3a062c902131c3e1000000a42189d/content.htm

Converting PFX certificate to p.12

In order to import the technical user into SMP keystore, we must convert the technical user to p.12 format. In our case, we need to convert `SUPUSER.PFX` to `SUPUSER.p12`.

One simple method is to use a browser that allows you to backup the certificate. In our example, we are using Firefox.

1. Open the Certificate Manager in Firefox as shown below:

 ![Certificate Manager](image)

 - **View**
 - **Backup**
 - **Backup All**
 - **Import**
 - **Delete**

2. Click on Import.
3. Browse to the technical user, in our case, it is called `SUPUSER.PFX`
4. Enter the password of the certificate

5. Successful import message is displayed
6. Now export the certificate

![Certificate Manager](image1)

7. Type the name which is in our case **SUPUSER.p12** and select the save as type (*.p12)

![File Name to Backup](image2)

8. Repeat the same steps for SSLUSER.pfx
Import Certificates into SMP Key Store

Prerequisites:
1. Make sure you have generated a technical user certificate with p.12 format and signed by a trusted CA
2. Make sure you have generated a user certificate with p.12 format and signed by a trusted CA
3. Make sure the Technical user certificate has the same password as the SMP keystore password

Preparations and Importing Technical User

There are many ways to import the certificates into SMP keystore. In our white paper, I am using a KeyStore explorer 4.1.1

1. Backup the SMP 3.0 key store which is located in the following default location:
 C:\SAP\MobilePlatform3\Server\configuration\smp_keystore.jks

2. Install KeyStore Explorer 4.1.1 or higher on the machine where SMP 3.0 is installed
 Note: KeyStore Explorer requires the following:
 a. Java 1.6 runtime
 b. Java Cryptography Strength. Follow the instructions on how to download it and install it

3. After keyStore Explorer is configured, you should see the following screen when it is run
4. Click on Open an existing Keystore
5. Select smp_keystore.jks located under, C:\SAP\MobilePlatform3\Server\configuration, as shown below:

6. Then click Open
7. You will be asked to type the Keystore password. In our example, it is s3pAdmin and click OK.

8. Once the keystore is opened, select from Tools, Import Key Pair (CTRL+K) as shown below:
9. Select PKCS #12 as the key type to import

![Import Key Pair Type]

Select the type of key pair import required:
- [] PKCS #12
- [] PKCS #8
- [] JCEK
- [] OpenSSL

[OK] [Cancel]

10. Click on OK to go to the import screen

11. Under Decryption password, type the password of the Technical user, in our example it is s3pAdmin and browse to the Technical user p.12 certificate. In our example it is called SUPUSER.p12, the
screen should look like this below:

12. Click on Import

13. A giving alias will be used, in our case, we are giving the alias name as the certificate name, see below:

14. Click OK

15. You will be asked the type the password of the certificate. In our case it is the same as the keystore password which is `s3pAdmin`

16. You should see the following if everything was successful:

17. Click on OK
Importing CA or ROOT certificate into SMP key store

Same process that we used to import the technical user, but this time we are going to import the Root certificate that signed that Technical user certificate. To do that, do the following:

1. If the KeyStore Explorer is running from the previous step, go to Tools and select Import Trusted Certificate as shown below:

 ![Import Trusted Certificate](image1)

2. Browse to the Root Certificate as shown below:

 ![Browse Root Certificate](image2)

3. Click on Import
4. You may get the following warning shown below, ignore it:

 "Could not establish a trust path for the certificate. The certificate information will now be displayed after which you may confirm whether or not you trust the certificate."

 [Image of warning message]

5. Click OK

6. You will see the certificate details being displayed as shown below:

 ![Certificate Details for File 'SAPNetCA.cer']

 - **Certificate Hierarchy:** SAPNetCA
 - **Version:** 3
 - **Subject:**
 - Email:
 - CN: SAPNetCA
 - O: SAP
 - D: SAP
 - **Issuer:**
 - Email:
 - CN: SAPNetCA
 - O: SAP
 - D: SAP
 - **Serial Number:** 0x10000000
 - **Valid From:** 04/May/1998 13:56:34 CEST
 - **Valid Until:** 18/Jul/2015 14:00:00 CEST
 - **Public Key:** RSA 1024 bits
 - **Signature Algorithm:** SHA-1 with RSA
 - **Fingerprint:** SHA-1

7. Once everything is verified, click on OK

8. You will be asked if you want to import the certificate, click Yes:

 ![Import Trusted Certificate]

 - Do you want to accept the certificate as trusted?
 - Yes
 - No
9. You will be asked to give an alias, we are using the same alias as the certificate name as shown below:

![Image of Trusted Certificate Entry Alias]

10. Click on OK

11. If everything goes well, you will see a success message indicating the import was successful

![Image of Import Trusted Certificate]

12. IMPORTANT: Keep the KeyStore Explorer open and do not close it, because we need to save our changes later

Verifying the certificates in the keystore

After successfully importing the Trusted Root certificate and the Technical user certificate into the keystore we need to verify if the technical user is signed by the Root certificate that got imported and both certificates are in the keystore, todo that, do the following:

1. If the keyStore Explorer is still opened from the previous step, verify if you see the two certificates aliases as shown below:

![Image of KeyStore Explorer]

<table>
<thead>
<tr>
<th>Entry Name</th>
<th>Algorithm</th>
<th>Certificate Expiry</th>
<th>Last Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>baltimorecybertrustca</td>
<td>RSA 2048</td>
<td>18/May/2025 01:59:00 CET</td>
<td>12/Jul/2013 09:47:34 CET</td>
</tr>
<tr>
<td>entrust2046</td>
<td>RSA 2048</td>
<td>24/Jul/2025 16:15:12 CET</td>
<td>15/Feb/2013 11:01:37 CET</td>
</tr>
<tr>
<td>gte_global_root</td>
<td>RSA 1024</td>
<td>14/Aug/2018 01:59:00 CET</td>
<td>30/Jul/2007 09:53:44 CET</td>
</tr>
<tr>
<td>sappnetca</td>
<td>RSA 1024</td>
<td>18/Jul/2015 14:00:00 CET</td>
<td>25/Jul/2015 17:45:12 CET</td>
</tr>
<tr>
<td>sapppassportca</td>
<td>RSA 1024</td>
<td>18/Jul/2015 14:00:00 CET</td>
<td>25/Jul/2015 17:45:12 CET</td>
</tr>
<tr>
<td>ssi</td>
<td>RSA 2040</td>
<td>10/Jul/2015 14:00:00 CET</td>
<td>25/Jul/2015 17:44:33 CET</td>
</tr>
<tr>
<td>tc_trust_center_sql_ca_1</td>
<td>RSA 2010</td>
<td>11/Feb/2013 19:45:15 CET</td>
<td>03/Mar/2009 16:41:01 CET</td>
</tr>
</tbody>
</table>
2. Next Verify if the Technical user certificate is signed by the ROOT certificate by double clicking on supuser, you should see the following:

![Certificate Details for Entry 'supuser'

2. Notice SUPUSER is signed by SAPNetCA ROOT certificate
3. Click on OK
4. Now click on SAVE icon to save all the changes as shown below:

5. Once everything is saved to the Keystore, close KeyStore Explorer and it is time now to configure SMP 3.0 OData Endpoint
Configuring SMP 3.0 OData Endpoint

Before doing any configuration to the SMP 3.0, we need to restart the SMP 3.0 server, not the physical machine or VM, for the changes we have done to the keystore take effect.

1. After restarting the SMP server, open the Cockpit by going to the following URL: https://localhost:8083/Admin using Chrome

2. You may see this screen below:

 Your connection is not private

 Attackers might be trying to steal your information from localhost (for example, passwords, messages, or credit cards). NET-ERR_CERT_AUTHORITY_INVALID

 Proceed to localhost (unsafe)

3. Click on Proceed to localhost (unsafe)
4. Login to the Cockpit using smpAdmin user and password, by default password is s3pAdmin.

5. After login successfully to SMP Cockpit, you should see the following screen below:

6. To create an application, click on the Applications Rectangle box.
7. Click on New button

8. Type the ID of the Endpoint application and the name, see the sample below:

```
New Application

ID: com.sap.flight
Name: SAP Flight Sample
Vendor: SAP AOS
Type: Native
Description: Sample used to do Mutual Authentication
```

9. Click Save, and you should see the following:

```
OVERVIEW BACK END AUTHENTICATION CLIENT POLICY PUSH CLIENT RESOURCES OFFLINE

Endpoint
- Internal
- Use System Proxy
- Allow anonymous access

Maximum Connections: 500
Certificate alias: 
Rewrite Mode: Rewrite URL in SMP
Relative Path: 

SSO Mechanisms

Add
Type

No data
```

10. First step here we need to provide the OData backend Endpoint. In our example we are using the Flight OData endpoint: Please refer to the following configuration below:
How to Configure Mutual Authentication using X.509 Certificate in SMP

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint:</td>
<td>https://<domain>:<port>/sap/opu/odata/IWBEP/RMTSAMPLE\FLIGHT_2/?$format=xml</td>
<td>SAP Gateway backend endpoint</td>
</tr>
<tr>
<td>Certificate alias</td>
<td>SUPUSER</td>
<td>This is the alias we defined when we imported the technical user into the keystore. The alias must match the alias in the keystore</td>
</tr>
</tbody>
</table>

SSO Mechanisms

| Authentication | x.509 User Certificate |

11. Enter the Endpoint as shown below and the alias:

12. Next click on Add under SSO Mechanisms and select X.509
13. Click Save, you should see the following:

SSO Mechanism Changes

![SSO Mechanism Changes]

SSO Mechanism successfully added. Please press Save to update your changes.

14. You should have the following configuration so far:
How to Configure Mutual Authentication using X.509 Certificate in SMP

15. Next we need to add the Authentication Security Profile, click on AUTHENTICATION tab

SECURITY PROFILE

PROFILE NAME

*Profile Name: Enter New Profile

Check Impersonation

AUTHENTICATION PROVIDERS

<table>
<thead>
<tr>
<th>Add</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>X.509</td>
</tr>
</tbody>
</table>

No data
16. Under profile name give a name to the new security profile. Example: `authflightmu` as shown below and click on Add.

17. After clicking on Add, you should see the following screen:

18. Select `x.509 User Certificate` and click Save as shown below:
19. If everything goes well, you should see the following:

Authentication Provider Changes

[Image of a green checkmark]

Authentication Provider successfully added. Save your Security Profile to Update your changes.

20. Click on OK
21. Now click on Save

22. Once you clicked on Save, you are asked to confirm the Update. Click on Yes
23. Now we should have something like this screen below:

![APPLICATIONS screen](image)

Pinging the Endpoint

Next step is to test the OData endpoint and make sure SMP server can ping it. To ping the endpoint do the following:

1. Select the Application name that got created in the previous step as shown below:

![APPLICATIONS screen](image)

2. Once the application is selected, click on Ping button as shown below:

![APPLICATIONS screen](image)

3. If everything is configured correctly and the Endpoint hostname is reachable, you should see a success message, like the one below:

![Ping status](image)

4. Close the Ping status dialog message by clicking on the X on the top right corner
Installing the user certificate on the client browser

After configuring SMP server and getting the Endpoint to ping successfully, next step now is to add the user certificate to the browser.

1. On the VM or client machine where you are going to test the Mutual Authentication, navigate to the location where the user p.12 certificate is located.

2. Open Internet Option and select the Content Tab as shown below:

![Internet Properties](image)
3. Click on Certificates
4. Make sure the Personal tab is selected as shown below:

![Certificate Management Window](image)

5. Under the Personal Tab, click on **Import...**
6. Click Next on the first screen, until you go to the File to Import screen as shown below:

File name:

Note: More than one certificate can be stored in a single file in the following formats:
- Personal Information Exchange- PKCS #12 (.PFX, .P12)
- Cryptographic Message Syntax Standard- PKCS #7 Certificates (.P7B)
- Microsoft: Serialized Certificate Store (.SST)

Learn more about certificate file formats.

7. Browse to the User p.12 certificate as shown below:
How to Configure Mutual Authentication using X.509 Certificate in SMP

8. You should see the following:

File to Import
Specify the file you want to import.

File name: C:\Users\username\Downloads\ssluser\SSLUSER.p12

Note: More than one certificate can be stored in a single file in the following formats:
- Personal Information Exchange- PKCS #12 (.PFX, .P12)
- Cryptographic Message Syntax Standard- PKCS #7 Certificates (.P7B)
- Microsoft Serialized Certificate Store (.SST)

Learn more about certificate file formats

9. Click Next

Password
To maintain security, the private key was protected with a password.

Type the password for the private key.

Password:

Enable strong private key protection. You will be prompted every time the private key is used by an application if you enable this option.

Mark this key as exportable. This will allow you to back up or transport your keys at a later time.

Include all extended properties.

Learn more about protecting private keys
10. Type the User certificate password, and click Next.
11. You should see the following screen:

```
Certificate Import Wizard

Certificate Store
Certificate stores are system areas where certificates are kept.

Windows can automatically select a certificate store, or you can specify a location for
the certificate.

- Automatically select the certificate store based on the type of certificate
- Place all certificates in the following store

Certificate store:
Personal

Learn more about certificate stores
```

12. Make sure the Place all certificates in the following store is set for Personal, and click Next.

13. Once it is done, click Finish as shown below.
14. You should see the following confirmation, click OK:

The import was successful.

15. Now verify if the certificate did get imported as shown below:
16. As you can see SSLUSER certificate got imported successfully. Click on Close
17. Click on OK to close the Internet Option properties

Generating SMP public certificate

SMP 3.0 has a self-signed certificate that gets generated during the installation of the server. In production, you need to create CSR for the SMP server and sign it. Usually same Root Certificate that signed by the the
How to Configure Mutual Authentication using X.509 Certificate in SMP

technical user. In our test, we are going to use the self-signed certificate. To generate the public certificate do the following:

1. Using Chrome, access the Cockpit by typing https://localhost:8083/Admin
2. You will get the following screen:

 ![Log On screen](image)

 Log On

 User Name

 Password

 Log On

3. Now click on the https exception as shown below
How to Configure Mutual Authentication using X.509 Certificate in SMP

This site uses a weak security configuration (SHA-1 signatures), so your connection may not be private.

The identity of this website has been verified by an untrusted certificate authority, but does not have public audit records.

The site is using outdated security settings that may prevent future versions of Chrome from being able to safely access it.

Certificate information

Your connection to dewdhwsbs5505.emea.global.corp.sap is encrypted with obsolete cryptography.

The connection uses TLS 1.2.

The connection is encrypted using AES_128_CBC, with SHA1 for message authentication and DHE_RSA as the key exchange mechanism.

Site information

You first visited this site on Jun 25, 2015.

What do these mean?
4. Click on Certificate Information

![Certificate Information]

- This certificate is intended for the following purpose(s):
 - All issuance policies
 - All application policies

- Issued to: [Redacted]
- Issued by: [Redacted]
- Valid from 6/24/2015 to 6/23/2017

5. Click on Details tab
6. Click on Copy to File… as shown below

![Certificate Details](image)

7. Click Next on the Welcome screen
8. Select Base-64 Encoded X.509 (CER)

Export File Format
Certificates can be exported in a variety of file formats.

Select the format you want to use:

- DER encoded binary X.509 (CER)
- Base-64 encoded X.509 (CER)
- Cryptographic Message Syntax Standard - PKCS #7 Certificates (.P7B)
 - Include all certificates in the certification path if possible
- Personal Information Exchange - PKCS #12 (.PFX)
 - Include all certificates in the certification path if possible
 - Delete the private key if the export is successful
 - Export all extended properties
- Microsoft Certified Certificate Store (.PST)

Learn more about certificate file formats

9. Click Next
10. Provide a file name of the certificate by clicking on browse and select a location.

![Certificate Export Wizard](image)

File name: [path to the certificate file]

Browse...
11. Once done click Finish

12. If the export is successful, you will see the following screen:

13. Click on OK
Install the SMP 3.0 Public Certificate

After generating the Base 64 encoded certificate, now we need to install it to the browser into the Trusted Root Certification Authorities. To do that, follow the following steps:

1. Navigate to the location where you exported the public certificate
2. If you saved it with extension ".cer", double click on it, you will see the following:

 Certificate Information

 This certificate is intended for the following purpose(s):
 - All issuance policies
 - All application policies

 Issued to: [Redacted]
 Issued by: [Redacted]
 Valid from 6/24/2015 to 6/23/2017

3. Click on Install Certificate…
4. Click Next on the Welcome screen
5. Select Place all certificates in the following store and click Browse

 Certificate Import Wizard

 Certificate Store
 Certificate stores are system areas where certificates are kept.

 Windows can automatically select a certificate store, or you can specify a location for the certificate.

 - Automatically select the certificate store based on the type of certificate
 - Place all certificates in the following store

 Certificate store: [field] [Browse]

 Learn more about certificate stores

6. Select Trusted Root Certification Authorities

 Select Certificate Store

 Select the certificate store you want to use.

 - Personal
 - Trusted Root Certification Authorities
 - Enterprise Trust
 - Intermediate Certification Authorities
 - Active Directory User Object
 - Trusted Publishers

 [Check box] Show physical stores

 [OK] [Cancel]

7. Click OK
8. Click Next
9. Now click Finish

10. Public self-signed certificate is now installed to the browser

11. Click OK to close confirmation message

12. Click OK to close the Certificate window
Installing POSTMAN

In order to use POSTMAN, we need to use Chrome.

1. Open Chrome browser and navigate to this URL:
 https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgiglgnpjgdojojipjoooidkmcomcm?hl=en

2. Click on ADD TO CHROME

3. You should see the following screen below:

 ![Postman - REST Client](image)

 Confirm New App

 Add “Postman - REST Client”?

 It can:

 - Read and change all your data on the websites you visit

4. Click on Add
5. After Postman is added, you will be able to access it, by typing the following in the URL:
chrome://apps/

6. Now click on Postman – REST

7. You should see the following:
Registering with SMP using X.509 user certificate

After successfully installing POSTMAN, now we are ready to use it and test our Mutual Authentication configuration and register with SMP. To register with SMP using POSTMAN, do the following:

1. Under POSTMAN, make sure Normal tab is selected

2. In order to register with SMP, we need to provide the URL for SMP and application Endpoint as well, we need to use port 8082 for Mutual Authentication. Enter the following configuration below:

 URL:
   ```
   https://<SMP-Fully-Qualified-Domain>:8082/odata/applications/latest/com.sap.flight/Connections
   ```

 8082: Used to do Mutual Authentication with SMP
 com.sap.flight: is the application name we created in SMP. It MUST match what we created in SMP

3. POSTMAN configuration should look like this

4. Next we need to change the method from GET to POST, do the following as shown below
5. Once POST is selected, now we need to change the submission from Form to RAW, see below:

6. You should see the following:

7. Enter the following XML code in the body as shown below and change

   ```xml
   <?xml version="1.0" encoding="UTF-8"?>
   <m:properties>
   <d:DeviceType>Windows</d:DeviceType>
   </m:properties>
   </content>
   </entry>

   Note: Make sure the xml:base matches your URL where it says <your-domain-URL>
How to Configure Mutual Authentication using X.509 Certificate in SMP

8. After typing this in the body, change the Text type to XML as shown below:

```
8. After typing this in the body, change the Text type to XML as shown below:

<form-data x-www-form-urlencoded raw

<entry>
<content>
<deviceType>Windows</deviceType>
<deviceTypeWindows>DeviceType</deviceTypeWindows>
</content>
</entry>
```

9. Finally we should have the following:

```
9. Finally we should have the following:

<form-data x-www-form-urlencoded raw

<entry>
<content>
<deviceType>Windows</deviceType>
<deviceTypeWindows>DeviceType</deviceTypeWindows>
</content>
</entry>
```

10. Next we need to configure the Basic Auth Tab, click on Basic Auth as shown below:

```
10. Next we need to configure the Basic Auth Tab, click on Basic Auth as shown below:

<form-data x-www-form-urlencoded raw

<entry>
<content>
<deviceType>Windows</deviceType>
<deviceTypeWindows>DeviceType</deviceTypeWindows>
</content>
</entry>
```

11. Click on Refresh Headers

12. You should see this screen below:
13. Change Authorization to the content type as shown below:

<table>
<thead>
<tr>
<th>Normal</th>
<th>Basic Auth</th>
<th>Digest Auth</th>
<th>OAuth 1.0</th>
<th>No environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://[server]/[path]/[resource] [POST] [URL params] [Headers (1)]

- **Content-Type**: application/atom+xml;charset=utf8

```xml
<?xml version="1.0" encoding="UTF-8"?>

</entry>
```

Send  Preview  Add to collection  Reset
14. Now we are ready to register, click on the Send Button a pop up window should be displayed asking you to select the user x.509 Certificate as shown below:
15. Select the User Certificate, in my case it is SSLUSER which is already selected. Click on OK

16. As you can see we are able to register with SMP using Mutual Authentication with x.509 user certificate. Now to access the end point, use the following URL and change the method to GET and use the Application ID that is highlighted. So your new configuration should look like this:

URL: https://<YOUR-DOMAIN>:8082/com.sap.flight
Method: GET
Header: X-SMP-APPCID and value, the d03b9056-eb27-40f0-990b-79e15d42cc17

17. Now click Send to fetch the Flight entities as shown below:
18. As you can see now, this indicates, we were able to access the Flight OData endpoint using Mutual Authentication in SMP 3.0
Verifying the Registration in SMP Cockpit

To verify and check the application registration in SMP 3.0 Cockpit, do the following:

1. Login to the SMP Cockpit

2. Click on Registrations

3. You should see the following X-SMP-APPCID which is the Registration ID value below:

   Registrations:(1)

<table>
<thead>
<tr>
<th>Registration ID</th>
<th>Application ID</th>
<th>Device Type</th>
<th>User Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>603b9056-eb27-40f0-920b-79e15de2e017</td>
<td>com.sap-flight</td>
<td>Windows</td>
<td></td>
</tr>
</tbody>
</table>

4. This will show we have completed the registration and we were able to fetch all the OData Endpoint Entities
TROUBLESHOOTING

Clearing the Cache

When working with POSTMAN, if you started to experience unexplainable behavior, clear the cache and redo your task.

Response Code 404

If you received from the backend a response code 404, but you are able to access the backend OData Endpoint directly from the browser, that means you missed adding the profile parameters. Please refer to the following KBA: 2008296

Troubleshooting X.509 Client Certificate communication issues

Symptoms: SAP Gateway and SAP Mobile Platform is configured to use X.509 certificates to authenticate backend gateway. If you receive certificate authentication issues, then increase your backend Internet Communication Manger (ICM) trace to level 2 for retrieving detailed SSL debug information.

For more information refer following link:
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/48/3a062c902131c3e10000000a42189d/content.htm